Plasticity of calcium-permeable AMPA glutamate receptors in Pro-opiomelanocortin neurons

نویسندگان

  • Shigetomo Suyama
  • Alexandra Ralevski
  • Zhong-Wu Liu
  • Marcelo O Dietrich
  • Toshihiko Yada
  • Stephanie E Simonds
  • Michael A Cowley
  • Xiao-Bing Gao
  • Sabrina Diano
  • Tamas L Horvath
چکیده

POMC neurons integrate metabolic signals from the periphery. Here, we show in mice that food deprivation induces a linear current-voltage relationship of AMPAR-mediated excitatory postsynaptic currents (EPSCs) in POMC neurons. Inhibition of EPSCs by IEM-1460, an antagonist of calcium-permeable (Cp) AMPARs, diminished EPSC amplitude in the fed but not in the fasted state, suggesting entry of GluR2 subunits into the AMPA receptor complex during food deprivation. Accordingly, removal of extracellular calcium from ACSF decreased the amplitude of mEPSCs in the fed but not the fasted state. Ten days of high-fat diet exposure, which was accompanied by elevated leptin levels and increased POMC neuronal activity, resulted in increased expression of Cp-AMPARs on POMC neurons. Altogether, our results show that entry of calcium via Cp-AMPARs is inherent to activation of POMC neurons, which may underlie a vulnerability of these neurons to calcium overload while activated in a sustained manner during over-nutrition.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

GluA2-Lacking AMPA Receptors and Nitric Oxide Signaling Gate Spike-Timing–Dependent Potentiation of Glutamate Synapses in the Dorsal Raphe Nucleus

The dorsal raphe nucleus (DRn) receives glutamatergic inputs from numerous brain areas that control the function of DRn serotonin (5-HT) neurons. By integrating these synaptic inputs, 5-HT neurons modulate a plethora of behaviors and physiological functions. However, it remains unknown whether the excitatory inputs onto DRn 5-HT neurons can undergo activity-dependent change of strength, as well...

متن کامل

Synapse‐specific expression of calcium‐permeable AMPA receptors in neocortical layer 5

KEY POINTS In the hippocampus, calcium-permeable AMPA receptors have been found in a restricted subset of neuronal types that inhibit other neurons, although their localization in the neocortex is less well understood. In the present study, we looked for calcium-permeable AMPA receptors in two distinct populations of neocortical inhibitory neurons: basket cells and Martinotti cells. We found th...

متن کامل

Fear extinction induces mGluR5-mediated synaptic and intrinsic plasticity in infralimbic neurons.

Studies suggest that plasticity in the infralimbic prefrontal cortex (IL) in rodents and its homolog in humans is necessary for inhibition of fear during the recall of fear extinction. The recall of extinction is impaired by locally blocking metabotropic glutamate receptor type 5 (mGluR5) activation in IL during extinction training. This finding suggests that mGluR5 stimulation may lead to IL p...

متن کامل

A role of TARPs in the expression and plasticity of calcium-permeable AMPARs: Evidence from cerebellar neurons and glia

The inclusion of GluA2 subunits has a profound impact on the channel properties of AMPA receptors (AMPARs), in particular rendering them impermeable to calcium. While GluA2-containing AMPARs are the most abundant in the central nervous system, GluA2-lacking calcium-permeable AMPARs are also expressed in wide variety of neurons and glia. Accumulating evidence suggests that the dynamic control of...

متن کامل

Evidence for low GluR2 AMPA receptor subunit expression at synapses in the rat basolateral amygdala.

Fast excitatory synaptic responses in basolateral amygdala (BLA) neurons are mainly mediated by ionotropic glutamate receptors of the alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) subtype. AMPA receptors containing an edited GluR2 subunit are calcium impermeable, whereas those that lack this subunit are calcium permeable and also inwardly rectifying. Here, we sought to determine t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2017